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Abstract

Atmospheric aerosol particle formation is frequently observed throughout the atmo-
sphere, but despite various attempts of explanation, the processes behind it remain
unclear. In this study data mining techniques were used to find the key parameters
needed for atmospheric aerosol particle formation to occur. A dataset of 8 years5

of 80 variables collected at the boreal forest station (SMEAR II) in Southern Finland
was used, incorporating variables such as radiation, humidity, SO2, ozone and present
aerosol surface area. Data analysis were done using clustering and classification meth-
ods. The aim of this approach was to gain new parameters independent of any sub-
jective interpretation. This resulted in two key parameters, relative humidity and pre-10

existing aerosol particle surface (condensation sink), capable in explaining 88% of the
nucleation events. The inclusion of any further parameters did not improve the results
notably. Using these two variables it was possible to derive a nucleation probability
function. Interestingly, the two most important variables are related to mechanisms
that prevent the nucleation from starting and particles from growing, while parame-15

ters related to initiation of particle formation seemed to be less important. Nucleation
occurs only with low relative humidity and condensation sink values. One possible ex-
planation for the effect of high water content is that it prevents biogenic hydrocarbon
ozonolysis reactions from producing sufficient amounts of low volatility compounds,
which might be able to nucleate. Unfortunately the most important biogenic hydro-20

carbon compound emissions were not available for this study. Another effect of water
vapour may be due to its linkage to cloudiness which may prevent the formation of nu-
cleating and/or condensing vapours. A high number of preexisting particles will act as
a sink for condensable vapours that otherwise would have been able to form sufficient
supersaturation and initiate the nucleation process.25
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1. Introduction

Atmospheric aerosol particle formation is observed in various environments: the upper
atmosphere (Eichkorn et al., 2002), marine environments (O’Dowd et al., 2002b), urban
air (Mönkkönen et al., 2004; Dunn et al., 2004), remote areas (Koponen et al., 2002)
and boreal forests (Mäkelä et al., 1997). A recent overview article discusses these5

observations in detail (Kulmala et al., 2004a).
Despite the numerous observations, the fundamental cause of atmospheric particle

formation remains in many cases unknown. Because of the physical and chemical
complexity of the atmosphere, it is often a difficult task to focus on the most relevant
process causing nucleation. But this focus is important, since without prior knowledge10

it is difficult to identify the key variables. However, if a wide range of measurements is
carried out for a long period of time in one location, it may be possible to detect sub-
tle, previously unknown factors lying behind the atmospheric particle formation events.
Currently, long-term atmospheric aerosol measurements are conducted only at a few
stations (Ruuskanen et al., 2003; Sioutas et al., 2004; Aalto et al., 2001) or with a few15

measured parameters like CO2 (Keeling et al., 1982).
Even the few sets of long-term measurements have yielded many significant ad-

vances in atmospheric sciences. Such a recent finding is the occurrence of new atmo-
spheric particle formation taking place in boreal forest environments around 50–100
times a year. These newly formed particles affect the Earth’s radiation budget directly20

by scattering and absorption (IPCC, 2001) and indirectly by acting as cloud condensa-
tion nuclei (Twomey, 1974).

Many studies have investigated the physical mechanisms, meteorological conditions
(Nilsson et al., 2001) and chemical compounds related to particle formation (Weber
et al., 1995; Korhonen et al., 1999; Birmili and Wiedensohler, 2000; O’Dowd et al.,25

2002a; Bonn and Moortgat, 2003; Kulmala et al., 2004a). Earlier attempts have demon-
strated that favorable conditions for particle formation bursts include low atmospheric
water content, low preexisting particle concentration and high solar radiation (Boy and
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Kulmala, 2002).
However, many previous studies have been based on preconceptions of which pa-

rameters are important, in which case the role of other parameters may have been
overlooked. To avoid this, we have done a comprehensive study using data mining
techniques. We have collected from the SMEAR II station a dataset of eight years with5

around 80 parameters, which were averaged over 30 min. This dataset was studied
using different classification and clustering methods. In Sect. 2 we describe our mea-
surements and the quality control of our database. Due to the great number of previous
studies we do not describe everything exhaustively. Some derived variables such as
condensation sink are are discussed in more detail. The data analysis methods used10

are described in Sect. 3. We present the main results obtained by the application of
these methods in Sect. 4. Finally, in Sect. 5 we discuss our findings in the light of the
physical and chemical processes involved in new particle formation, and draw some
general conclusions.

2. Experimental15

2.1. Sampling site

Measurements used in this study were performed during the years 1996–2003 at the
SMEAR II station, which is located in the Hyytiälä Forestry Field Station of the Uni-
versity of Helsinki between Tampere and Jyväskylä in southern Finland (61◦51′ N,
24◦17′ E, 180 m a.s.l.). The station was designed to study mass and energy flows20

in atmosphere-vegetation-soil continuum. Around the station, for about 200 m to all
directions, there is a homogeneous 40-year-old Scots pine stand. The dominant stand
height is about 14 m and the all-sided needle area is 7 m2m−2. Rannik (1998) describes
the micrometeorology of the site.

7580

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/7577/acpd-5-7577_p.pdf
http://www.atmos-chem-phys.org/acpd/5/7577/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 7577–7611, 2005

A look at aerosol
formation using data
mining techniques

S. Hyvönen and
ATMDM team

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

2.2. Measurements

In this study we used the continuous measurements for concentrations of NO, NOx,
SO2, O3, H2O, CO2 and CO, for the number size distribution of aerosol particles (dry
diameter of 3–600 nm particles) and for meteorological data, such as temperature,
pressure, wind speed, wind direction, humidity and radiation (UV-A, UV-B, PAR, global,5

net, reflected global and reflected PAR). The measurements of gas concentrations and
meteorological data were performed at different heights: levels of 4.2, 8.4, 16.8, 33.6,
50.4 and 67.2 m on the measurement tower. The number size distribution of aerosol
particles was measured at 2 m height.

Flux measurements (sensible heat, latent heat, momentum, CO2, H2O, O3 and10

aerosol particles) were carried out in a tower at the height of 23.3 m and partly at
the height of 46.0 m using eddy covariance (EC) technique (Suni et al., 2003). Tempo-
ral gaps in the CO2 flux measurements were filled using the same method as Aubinet
et al. (2001) and Falge et al. (2001). The details of the measurements performed
continuously at the SMEAR II station can be found in (Vesala et al., 1998).15

2.2.1. Condensation sink

The ambient aerosol population acts as a sink for other atmospheric constituents by
serving as a condensation surface for low-volatility vapours and by scavenging ultra-
fine aerosol particles by coagulation. To quantify these processes, we can calculate
the condensation sink caused by the aerosol population (see for example (Pirjola and20

Kulmala, 1998)):

CS = 2πD
∫ ∞

0
Dpβm(Dp)n(Dp)dDp = 2πD

∑
i

βiDpiNi .

Here Dpi describes the diameter of the particle in the size class i and Ni is the par-
ticle number concentration in the respective size class. D is the diffusion coefficient
of the condensing vapour, and βm the correction factor for the transition and the free25
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molecular regimes (Fuchs and Sutugin, 1970). The condensation sink serves as an
approximation of the coagulation sink, as it behaves identically, differing only in magni-
tude. Because the ambient aerosol particle size distribution in Hyytiälä was measured
using a Differential Mobility Particle Sizer (DMPS) at low relative humidities and thus in
a dry state, the hygroscopic growth factor was taken into account by using the param-5

eterization by Laakso et al. (2004), so that the calculated sink corresponds to ambient
RH conditions. Thus, the condensation sink depends on the particle size distribution,
temperature (via the diffusion coefficient) and RH. The RH dependency of the conden-
sation sink is stronger than the temperature effect.

2.2.2. Event classification10

To distinguish between days with new particle formation and days with no particle for-
mation we used a database created by Dal Maso et al. (2005)1. The database was
created by visual inspection of the continuously measured aerosol size distributions
over a size range of 3–600 nm in Hyytiälä. Days displaying a growing new mode in the
nucleation size range prevailing over several hours were classified as event days. Days15

which were clear of all traces of particle formation were classified as non-event days.
Days which could not unambiguously be classified as either event or non-event days
were termed “undefined” days, and removed from the data pool used in this study.

3. Computational methods

The data mining methods that have been applied in this study are widely used ones. In20

this section we briefly describe each method used, but for details we refer the reader
to e.g. Hand et al. (2001); Hastie et al. (2001).

1Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen,
K. E. J.: Formation and Growth of Fresh Atmospheric Aerosols: Eight Years of Aerosol Size
Distribution Data from SMEAR II, Hyytiala, Finland, submitted to Boreal Env. Res., 2005.
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The computations were done on Matlab (Moler, 2004). In some cases the Statistics
Toolbox was used.

3.1. Preprocessing of data

The raw datasets obtained display very fragmented time series, 8 years of measure-
ments every 30 min, with a large number of missing values. Using this large data set,5

we calculated for each day the mean and standard deviation of each variable in a
chosen time window. The mean and standard deviation were only calculated if there
are more than 5 measured values in the appropriate window. Otherwise the values
on that day were declared as missing. We chose to exclude each variable with more
than 800 missing days (this includes particle flux and CO measurements) and after10

that any day with any missing variable. We also chose to exclude the latent heat flux
measurements, as their correlation with water vapour flux measurements is one.

The above treetop mast measurements were averaged to one variable (hi) and the
below treetop measurements to another (lo). As these correlate strongly, we have
frequently only included above treetop averages.15

Before calculations the data was normalized so that each variable has zero mean
and unit variance. The purpose of normalization is to make sure that all variables
are of equal weight. Otherwise, when comparing days, variables with large numerical
values will appear as more important.

After preprocessing and removal of undefined days we have around 500 days,20

roughly half of which are event days, and around 60 variables. The data set consists
of the measurements shown in Table 1.

3.1.1. Selection of time window

It is not reasonable to calculate daily means and standard deviations of the variables for
the whole 24 h, since in boreal regions such as Hyytiälä at 61 deg North the day length25

depends strongly on time of the year. Thus, for example, the fixed time window from
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04:00 am to 04:00 pm includes lots of non-daylight hours in the winter. The window
of fixed length of 6 h starting at sunrise includes the whole day in midwinter and just
the early morning hours (04:00–10:00) in midsummer. These, among several other
time windows have been tested in the course of this work to obtain the most useful
parameters for nucleation. All time windows cover the late morning hours, because5

this is the time nucleation usually occurs. Because of the variations in the length of the
day, the window from sunrise to sunset seems a reasonable choice, and indeed it has
the best classification performance (data not shown). We thus present the results for
this window only. Selecting this window instead of one covering mainly hours preceding
the usual nucleation occurrence time means our results are likely to reflect more on the10

conditions under which aerosol particles keep growing rather than on factors initiating
nucleation.

3.2. Clustering

In trying to understand what causes nucleation events a reasonable first approach is to
cluster the days. In clustering one aims to divide the data into a number of clusters in15

such a way, that data points (here days) in the same cluster are similar to each other,
while data points in different clusters are dissimilar. A widely used clustering method is
the K-means algorithm (MacQueen, 1967). In the basic version one starts by picking
randomly K cluster centers. One then repeatedly assigns to each cluster all points
closest to the cluster center, and recomputes the new cluster center as the mean of20

all points in that cluster. This is done until no changes in the centers occur. The most
commonly used distance measure between points is the Euclidean distance.

When using K-means one first has to normalize the data and remove colinearities,
otherwise variables with large numerical values or strong correlations will dominate
the performance of the clustering algorithm. Elimination of correlations can be done25

using principal components analysis as a preprocessing step. Principal components
analysis (PCA) uses singular value decomposition (SVD) on the centered data matrix
to find mutually orthogonal linear combinations of the original variables in such a way
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that variance of the original data is preserved as well as possible (Pearson, 1901). In
many cases the variance captured by the last principal components is very small, and
they can be left out. One can project the data onto the first few principal components,
renormalize and do the clustering for this new data matrix. For this data the clustering
done using the first six principal components, which capture 70% of the variance in5

the data, resembles the clustering done on the original data matrix after a few strongly
correlating variables are removed, so we present the results for the original data only.
From the data used in clustering we have left out all radiation measurements except
global radiation, as all of these correlate strongly.

There are several methods for choosing the number of clusters K. We have used the10

Davies-Bouldin index (Davies and Bouldin, 1979). It is a function of the ratio of the sum
of within-cluster variation to between cluster separation, and therefore favors compact
and well separated clusters.

3.3. Classification methods

An alternative approach to understand the occurrence of events is to consider the15

setting as a classification problem: we want to use the data to classify each day as
an event day or a nonevent day. In fact, we are not really interested in separating
event days from nonevent days, but in understanding which variables one should use
to separate the two groups.

A standard approach in estimating the performance of classification methods is to20

use cross-validation. The data is repeatedly split into two independent sets, one of
which is used as the training set to fit the model in question, and the other is used as
the test set to to obtain an unbiased estimate for the classification error.

We evaluate the performance of the methods by computing the misclassification rate:

error=
Nmissed +Nf alse

Ntotal
· 100%,

25

where Nmissed is the number of event days classified as nonevents, Nf alse is the num-
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ber of nonevent days classified as event days, and Ntotal is the total number of days
classified. After cross-validation we report the average misclassification rate together
with 95% confidence intervals. We frequently also list the proportion of missed events
and false events:

missed =
Nmissed

Ntotal
· 100%, false =

Nf alse

Ntotal
· 100%.

5

Most classification methods require all classes to have approximately of the same num-
ber of cases.

3.3.1. Linear methods for classification

For an important class of classification methods the boundaries separating the objects
to be classified are linear. There are a number of methods to find a linear separating10

hyperplane. We briefly describe some of them. For more details see e.g. the reference
mentioned earlier.

In Linear Discriminant Analysis (LDA) the goal is to find a set of linear combinations
of the original variables so that when the data is projected onto the subspace spanned
by these vectors the within-class scatter is minimized and the between-class scatter is15

maximized. Such linear combinations are called linear discriminants. In a two-class
case such as ours we only look for one linear discriminant. The first linear discriminant
is the normal of the hyperplane separating the two classes. It therefore also tells how
event days are separated from nonevent days. LDA is closely related to multivariate
analysis of variance (MANOVA).20

One can use LDA for fitting quadratic boundaries by adding the second order terms
to the data matrix. For example, in the two variable case we add to the variables x
and y the second order terms x2, y2 and xy . We then do LDA in this five-dimensional
space with coordinates (x, y, x2, y2, xy) instead of the original two-dimensional one
with coordinates (x, y). We shall refer to this method as LDAQ.25
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Linear regression in turn predicts the output y via a linear model

y = β0 +
n∑

j=1

βjxj ,

where x=(xj )
n
j=1 is our n−dimensional input data. This is usually used to predict quan-

titative outputs, but it can be used for classification tasks too. In the classification case
we define y to be one for event days and zero for nonevent days, and fit the regression5

model accordingly. Our input data consists of the measurement vectors for each day.
Logistic regression belongs to generalized linear models. Here we want to formulate

a model for the probability that the output y is 1 given the input x: p(y=1|x). We could
use a linear model for this, but this is not ideal. For example, a linear model can take
values outside the interval [0, 1], which are not meaningful. Instead, we modify the10

model by transforming the probability nonlinearly so that it can be modeled by a linear
combination. In logistic regression this nonlinearity is the logistic function:

log
p(y = 1|x)

1 − p(y = 1|x)
,

which is modeled linearly, i.e.

log(p/(1 − p)) = β0 +
n∑

j=1

βjxj .
15

Support vector machines (SVM) belong to kernel methods, in which the idea is to
map the original data (usually nonlinearly) into a (higher dimensional) feature space
and do e.g. classification there (Shawe-Taylor and Christianini, 2004). When using
a linear kernel this method falls into the category of linear methods. In this case we
lose some of the potential of the method, but we are able to keep track of the vari-20

ables. Sacrificing linearity (which in any case is probably too strict an assumption in
our case) we have a choice of a wide variety of kernels. Most commonly used ones
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include polynomial kernels and RBF (radial basis function) kernels. Polynomial kernels
of degree two have been tried out in our study, but since the results for a wide variety of
parameter choices were constantly worse than for linear kernels, the results for these
are omitted. We have used the LS-SVM Toolbox for Matlab (Pelckmans et al., 2003).

3.3.2. Other classification methods5

With the SVMs we already moved out of the realm of linear methods. Here we describe
two other nonlinear classification methods that have been used.

K-nearest neighbor classification takes a point in the test set, compares it with all the
points in the training set, and decides the class by looking at the class of the K nearest
neighbors of the point. In our case, for K=10, the event status of a day in the test set is10

decided by looking at the event status of the 10 days most closely resembling the day
under inspection. This gives us a feel for how close the event days are to each other.
However, we do not gain information about in what aspects the event days are similar
to eachother.

Classification trees (Breiman et al., 1984) partition the feature space into a set of15

rectangles, and then assign a constant class in each one. We first split the space
into two regions, and assign a class to each one. The variable and the split-point are
selected to minimize classification error. Then both regions are split into two more
regions, and this process is continued until some stopping criterion is applied. This
can be visualized as a tree, see Fig. 1. The topmost variable (RH) is the single variable20

with the best classification performance. On the left branch of the tree we have the
condensation sink. This is the best variable (in terms of classification performance) in
distinguishing event days from nonevent ones in the half plane RH<77. Compare this
to Fig. 4. The leftmost branch of the tree presented in Fig. 1 corresponds to the lower
left corner of Fig. 4.25
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3.3.3. Feature selection

A simple approach to gain insight on the importance of different variables in explaining
events is to take all pairs of variables and see how well the days are classified as event
or nonevent days on the basis of the values of each pair. The same can be done
for each triplet of variables, but beyond that the complexity of the problem makes this5

approach impractical.
Of course, it is hardly likely to find a satisfactory explanation for such a complex

phenomenon by just using two or three variables. An alternative is to use a stepwise
approach (Hand et al., 2001). In doing stepwise forward selection of variables we start
with the variable which gives the best classification result by itself, and on each step10

add the variable which results in the best classification. In doing stepwise backward
selection of variables, we start with all variables, and on each step leave out one vari-
able, chosen so that the classification result is optimized. In forward selection there
is the risk that the combined effect of some set of variables is missed. In backwards
selection it is possible that we discard a significant variable at an early stage. For our15

data backwards selection performed poorly, so the results are omitted.
A tempting approach is to look at the weights given by linear regression for each

variable, or the normal of the separating hyperplane in the case of linear discriminant
analysis. One could argue that these tell about the relative importance of the variables.
This, however, is not true when there are strongly correlating variables so one should20

only use this approach with extreme caution: for our data set it was not applicable.

4. Results

4.1. Clustering

We used K-means clustering to cluster the days into four clusters. The results are
very good: the algorithm does not use event information for clustering, yet it produces25
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clusters with very few event days, as well as one with over 90% event days.
The temporal distribution of these days is presented in Fig. 2. Note the temporal

cohesion of the clusters, even though the calendar time is not used in the clustering.
Cluster 1 consists almost solely of event days, whereas clusters 3 and 4 have almost
no events. From top to bottom, the counts for days and event days for each cluster are5

presented in Table 2.
We observe four robust clusters: spring&fall days (cluster 1), summer days (clus-

ter 2), cloudy days (cluster 3) and polluted days (cluster 4). The names describing
clusters 3 and 4 are derived by looking at the cluster centers of these clusters. The
cluster centers, describing the typical values of each variable in each cluster, are pre-10

sented in Fig. 3. One can see that the best parameters to separate the event clusters
(1 and 2) from non-event clusters (3 and 4) are relative humidity, global radiation and
sensible heat. Also the mean of ozone and carbon dioxide concentrations have a sep-
aration power. Most of the event days fall in to clusters 1 and 2. The main difference
between these clusters is the time of the year and the related physical parameters. The15

summer days in cluster 2 have higher temperatures along with an elevated concentra-
tion of water and higher daily variability of CO2, O3 and H2O concentrations. Also the
CO2 and H2O fluxes differ in clusters 1 and 2. The condensation sink has low values
in the cluster with most of the events.

4.2. Results using classification methods20

The main result given by the wide range of classification methods used is that the most
important variables in explaining the nucleation events are the means of the relative
humidity (RH) and the logarithm of the condensation sink. This is supported by a
number of different approaches.

– When fitting a decision tree to the data, these are the top two variables selected25

in most cases. Moreover, on the test set the tree involving only these variables
(see Fig. 1) performs frequently as well as more complicated trees, which tend to
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overfit.

– These are also the two first variables selected when doing forward stepwise se-
lection of variables using any of the linear methods.

– These two variables form the best pair of variables. They also are almost always
included among the best three variables. The best pairs were sought after using5

both linear regression and linear discriminant analysis. For the best triplets, only
linear regression was used.

The performance of a number of methods using only RH and the logarithm of the
condensation sink is summarized in Table 3. Each method was run 1000 times using
different training and test sets, and the average percentage of errors and 95% confi-10

dence intervals for the errors were computed.
In Table 4 we have summarized the performance of a few of the top ranking pairs

using LDA. We see that RH and the condensation sink have the best performance. The
other methods yield similar results.

This can be compared to the performance of a few of the top ranking triplets using15

linear regression, summarized in Table 5. It is evident that there is no “best triplet” as
the 95% confidence intervals of all of these overlap. In fact, for 127 triplets the 95%
confidence intervals overlap with that of the best ranked one, topmost in this table, and
80 of these have confidence intervals which overlap that of the best pair; not one triplet
is clearly better than the best pair.20

We have demonstrated above that relative humidity and the condensation sink are
the most significant variables explaining the nucleation events. All of the linear clas-
sification methods had an error rate of approximately 12% when using only these two
variables. It seems reasonable to expect, that adding variables to the model would
improve classification results. But here we run into the problem demonstrated by the25

best triplets: there are too many choices of variables with equal performance.
When using stepwise addition of variables together with any of the classification

methods, different runs (using different training sets) yield different sets of variables
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with approximately equal performance. The same is true for decision trees. It is not
true that the two variable model could not be improved by adding variables, but the
set of variables that can be added for improved performance is not unique. This is in
fact quite a typical situation in data mining applications whenever there are correlations
between variables. Table 6 presents the results for two sets of forward addition of5

variables using LDA. After RH and the logarithm of the condensation sink are added
the lists diverge. Yet the performance of the methods after 10 variables are chosen are
not significantly different.

Finally, let us return to the two variables, RH and the condensation sink. We can
project the data onto the first linear discriminant. The first linear discriminant is the10

normal of the line separating events from nonevents in Fig. 4, so it is the direction
giving optimal separation for events and nonevents. Points in one end of the linear
discriminant are mainly event days, and points in the other end are mainly nonevent
days. From this projected data we can compute the probability of having an event day
at each point. This is done by first computing the proportion of events in each interval15

of a fixed width, and then fitting a logistic model to this data. This is illustrated in Fig. 5.
We get the following nucleation parameter describing the probability of nucleation:

Pnucl =
1

1 + exp(β1 log(CS) + β2(RH))
, (1)

β1 = 1.7 β2 = 0.13.

5. Discussion20

5.1. Condensation sink

Low condensation sink values favour nucleation due to two basic reasons (Kulmala
et al., 2005):
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– The existing aerosol population depletes the ambient air of vapours by acting as
a condensation surface; if the sink is high, no vapour is available to grow the
particles to larger sizes, and they are lost by coagulation and deposition. It is also
possible that these vapours participate in the nucleation process itself.

– A higher condensation sink signifies also a higher coagulation rate of newborn5

particles, meaning a shorter lifetime of these particles. The loss rate due to co-
agulation is higher the smaller the particle is. Thus, a lower sink increases the
likelihood of a nucleated particle growing large enough to survive.

These two processes work the same direction.

5.2. Relative humidity10

Besides the impact of relative humidity on the condensation sink by forcing the present
particles to grow by the uptake of water molecules and thus increasing the available
surface area for condensable vapours, RH affects the solar radiation reaching the at-
mospheric boundary layer. The effect of RH on solar radiation is due to its linkage to
clouds, fog and rain, since there is a strong correlation between RH and cloudiness.15

Thus, at least part of the reducing effect of relative humidity might be caused by the
reduction of solar radiation. Linked to this is the effect of relative humidity on the gas-
phase chemistry of compounds involved in the nucleation and the subsequent growth.
Note that these reaction mechanisms can occur only during cloud free days, since the
solar radiation is one of the key elements in the reaction chain.20

When assuming that the nucleation process is started by the formation of clusters
of either binary or ternary sulphuric acid (H2SO4) reactions (Kulmala et al., 2004b),
including either water vapour or water vapour and ammonia, the formation of sulphuric
acid is directly linked to the formation of OH. This depends on the amount of solar
radiation and the amount of water vapour present, both of which increase the OH25

concentration. However, the higher the water vapour concentration the lower the solar
radiation reaching the atmospheric boundary layer. Consequently there is a maximum
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production level between low and high relative humidity: increasing relative humidity
will first result in an increase of sulphuric acid formation, but this will decline after the
appearance of clouds.

A second possibility is that secondary organics, formed by gas-phase reactions of
emitted reactive hydrocarbons, cause the initiation of nucleation. These compounds5

can contribute via two different processes: by condensation on the clusters and thus
activating them by growing to detectable sizes (radius of 3 nm) (Kerminen et al., 2004)
or by forming new particles by themselves (Bonn and Moortgat, 2003). The most im-
portant ones are the reactive mono- and sesquiterpenes released by the biosphere.
Smog chamber studies indicate that the reaction with ozone form the products of low-10

est volatility, among the three possible oxidation reactions, competing at ambient condi-
tions. Bonn et al. (2002) and Bonn and Moortgat (2002, 2003) have found that only the
ozonolysis is affected by the presence of water vapour in nucleation and subsequent
growth. This is caused by the reaction of water vapour with the so-called stabilized
Criegee biradical (SCI), formed during the first reaction steps of the terpene. The for-15

mer suppresses the formation of the nucleating agent by competition.
Since the impact of both relative humidity and the condensational sink are linked

to each other, and furthermore to chemical compounds, there is currently no way to
separate the contribution of possible nucleation mechanisms and causes based on our
study.20

5.3. Other parameters

Previous work has indicated that nucleation events are largely explained by three pa-
rameters: temperature, water content and radiation (Boy and Kulmala, 2002). This
study supports these findings with the exception of radiation. This might be due to
the strong seasonal variation of the solar radiation. In our study we found two clearly25

important parameters, relative humidity and the condensation sink. Radiation has an
effect, but it is no more important than O3, SO2 or NO. These variables appear among
the best variables after relative humidity and condensation sink in different statistical
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methods and in repeated runs, but there is no clear way to choose one over the others.
One reason could be the internal correlations between the variables: selecting one of
them explains the latent variable behind all of them. Alternatively, the variables are
related to less important nucleation processes.

The variables we found to be important are related to the mechanisms that prevent5

nucleation from starting and particles from growing to detectable sizes. This finding
supports the hypothesis presented by Kulmala et al. (2000) that there exists a reser-
voir of thermodynamically stable clusters (TSC) in the atmosphere, which act as initial
nuclei for particle formation. However, TSC grow to detectable sizes only under cer-
tain conditions. The mechanisms for the growth of TSC are either self-coagulation of10

TSC, condensation of vapours, or both. High relative humidity and a high condensa-
tion sink decrease concentrations of condensable gases in the atmosphere and thus
prevent nucleation from starting and particles from growing. Similarly the high amount
of preexisting particles act as a coagulation sink for the TSC and for freshly formed,
below 3 nm particles. By coagulating onto preexisting particles the probability for self-15

coagulation of TSC will decrease and the nucleation process will stop. Still, from the
result of this study it cannot be concluded whether the TSC really act as initial nuclei
for nucleation or whether some new clusters are formed.

6. Conclusions

In this study we found that aerosol particle formation events observed in boreal forests20

are connected with two variables, the condensation sink and relative humidity. The
unfavorable effect of the condensation sink is supposed to be due to uptake of freshly-
nucleated clusters and condensing vapours.

The variables found to be important in this study are related to the mechanisms that
prevent nucleation from starting and particles from growing to detectable sizes. The25

outcome supports the idea of having processes that cause nucleation and processes
that prevent nucleation. The preventing mechanisms are the more important ones, and
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nucleation only occurs when the preventing mechanisms fail.
One possible explanation for the adverse connection of high relative humidity is due

to its effect on terpene oxidation products. In the presence of water vapour the stabi-
lized Criegee biradical (SCI) produce high volatility compounds, whereas with low RH
chemical reactions lead to low volatility compounds. Such low-volatility compounds can5

condensate onto nucleated clusters or nucleate by themselves. Also the effect of NOx
and O3 support this chemical reaction route. In addition to its effect on chemical reac-
tions, high relative humidities increase the condensation sink due to the hygroscopic
growth of aerosol particles. High relative humidity can also affect particle formation
due to its linkage to clouds, fog and rain since reduced solar radiation may inhibit pho-10

tochemical reactions related to nucleating vapours in the atmosphere.
Although we found a connection between the occurrence of nucleation and two key

variables, the detailed chemistry still remains speculative. One missing link in our study
is the concentration of biogenic Volatile Organic Compounds (VOC) emissions, which
are expected to be of high importance even at the low concentrations. Unfortunately,15

we were not able to measure VOCs since especially the more reactive compounds are
extremely hard to measure with the current instrumentation.

One possible cause of confusion is the possibility of two or even more different nucle-
ation mechanisms acting simultaneously in the atmosphere. One such combination is
clear-air nucleation vs. pollution nucleation, another possibility is combination of neutral20

and ion-induced nucleation.
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Kulmala, M., Petäjä, T., Mönkkönen, P., Koponen, I. K., Dal Maso, M., Aalto, P. P., Lehtinen,
K. E. J., and Kerminen, V.-M.: On the growth of nucleation mode particles: source rates of
condensable vapor in polluted and clean environments, Atmos. Chem. Phys., 5, 409–416,30

2005,
SRef-ID: 1680-7324/acp/2005-5-409. 7592
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Mönkkönen, P., Koponen, I., Lehtinen, K., Hämeri, K., Uma, R., and Kulmala, M.: Measure-
ments in a highly polluted Asian mega city: Observations of aerosol number size distribu-
tions, modal parameters and nucleation events, Atmos. Chem. Phys. Discuss., 4, 5407–15

5431, 2004,
SRef-ID: 1680-7375/acpd/2004-4-5407. 7579

Nilsson, E. D., Paatero, J., and Boy, M.: Effects of air masses and synoptic weather on aerosol
formation in the continental boundary layer, Tellus, 53B, 2001. 7579
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Table 1. Variables, symbols and measurement devices used in this study.

METEOROLOGICAL DATA

Temperature (4.2, 8.4, 16.8, 33.6, 50.4 and 67.2 m) T Ventilated and shielded sensor (Pt-100)
Wind speed (six heights; see above) WS Cup anemometer (Vector)
Wind direction (17, 34 and 50 m) WD Vane (Vector)
Relative humidity RH Calculated from H2O concentration
Ambient pressure (0 m) Pamb0 Druck DPI260 barometer
Potential temperature gradient PTG Calculated from temperature and pressure
Surface wetness sensor (18 m) SWS Raindetector (Vaisala)

GAS CONCENTRATIONS

O3 concentration (six heights) O3 Gas analyser (TEI 49C)
SO2 concentration (six heights) SO2 Gas analyser (TEI 43C)
NOx concentration (six heights) NOx Gas analyser (TEI 42 CTL)
NO concentration (six heights) NO Gas analyser (TEI 42 CTL)
H2O concentration (six heights) H2O Gas analyser (URAS 4)
CO2 concentration (six heights) CO2 Gas analyser (URAS 4)

RADIATION

UV-A (18 m) UV-A Solar sensors
UV-B (18 m) UV-B Solar sensors
Global radiation (18 m) Glob Pyranometer (Reemann)
Reflected global radiation (70 m) RGlob Pyranometer (Reemann)
PAR (18 m) PAR Li-Cor sensor
Reflected PAR radiation (70 m) RPAR Li-Cor sensor
Net radiation (70 m) NET Net radiometer (Reemann)

AEROSOL INSTRUMENTATION (2 m)

Size distribution (3–10 nm) 10.9 cm Hauke-type DMA + CPC (TSI 3025)
Size distribution (10–500 nm) 28 cm Hauke-type DMA + CPC (TSI 3010)

FLUX DATA

Sensible heat (eddy covariance (EC); 23 m) sensheat Ultrasonic anemometer (Solent 1012R2)
Latent heat (eddy covariance (EC); 23 m) latheat Ultrasonic anemometer (Solent 1012R2)
Momentum flux (eddy covariance (EC); 23 m) momentumflux Ultrasonic anemometer (Solent 1012R2)
Concentration fluctuations of CO2 (EC; 23 m) CO2flux High frequency gas analyser (Li-Cor 6262)
Concentration fluctuations of H2O (EC; 23 m) H2Oflux High frequency gas analyser (Li-Cor 6262)
Concentration fluctuations of aerosol particles (EC; 23 m) CPC TSI-3010
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Table 2. Number of different types of days in each cluster.

cluster 4 3 2 1

days 20 218 164 151
event days 1 22 93 140
nonevent days 19 196 71 11
percentage of event days 5 10 57 93
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Table 3. Average error rates over 1000 runs and 95% confidence intervals for different classi-
fication methods using means of RH low and the logarithm of the condensation sink. 10-NN
refers to the 10 nearest neighbor method.

Method error rate (%) false events (%) missed events (%)

LDA 11.9 ± 0.2 11.7 ± 0.2 12.2 ± 0.3
logistic regression 12.3 ± 0.2 11.3 ± 0.2 13.3 ± 0.3
linear regression 12.2 ± 0.2 14.8 ± 0.2 9.2 ± 0.2
SVM (linear kernel) 11.9 ± 0.2 11.7 ± 0.2 12.0 ± 0.2
10-NN 13.8 ± 0.2 14.6 ± 0.3 12.8 ± 0.3
LDAQ 12.7 ± 0.2 10.6 ± 0.3 15.0 ± 0.3
decision trees 14.2 ± 0.2 6.5 ± 0.2 23.1 ± 0.4
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Table 4. Average error rates over 40 runs for top ranking pairs of variables using LDA.

Variables error (%)

RH low mean, logCS mean 11.7 ± 0.7
RH high mean, logCS mean 12.1 ± 0.7
H2O low mean, RH high mean 13.4 ± 0.9
H2O high mean, RH high mean 13.5 ± 0.9
H2O high mean, RH low mean 13.8 ± 0.9
RGlob std, logCS mean 13.8 ± 0.7
H2O low mean, RH low mean 13.9 ± 0.9
RGlob mean, logCS mean 13.9 ± 0.8
Glob mean, logCS mean 14.0 ± 0.9
sensheat mean, logCS mean 14.3 ± 0.8
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Table 5. Average error rates over 20 runs for some top ranking triplets of variables using linear
regression.

Variables error(%)

RH low mean, logCS mean, SO2 high std 11.6 ± 1.3
RH low mean, logCS std, H2O low mean 11.6 ± 1.5
RH low mean, logCS mean, SWS std 11.7 ± 1.4
H2O high mean, logCS std, Glob mean 11.8 ± 1.2
RH low mean, logCS mean, O3 low mean 11.9 ± 1.5
RH high mean, logCS mean, NO low std 11.9 ± 1.5
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Table 6. Two sets of forward addition of variables using LDA. The variables are listed in the
order they are added to the model. Each addition is done based on average error rate over
100 runs on different training and test sets, given in the second column. The 95% confidence
intervals are be about ±0.6. After the first two variables the lists diverge.

Set 1 Set 2

variable error variable error

RH high mean 17.8 RH high mean 17.5
logCS mean 12.1 logCS mean 12.4
T high std 12.3 SO2 high std 12.0
logCS std 11.8 momflux std 11.1
CO2 high mean 11.1 O3 high std 11.0
O3 high std 10.8 SWS std 10.7
RH high std 10.6 O3 high mean 10.7
WS high mean 10.5 SO2 high mean 10.8
SO2 high std 10.2 SWS mean 10.5
SinWD mean 9.9 CosWD std 10.7
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RH

logCS

RH>77

RH<77

logCS>-5.5
logCS<-5.5

1 0 0

Fig. 1. A simple decision tree. Take a test day and start from the top of the tree. If RH is larger
than the value indicated, follow the right branch and conclude that the test day is not an event
day. In the opposite case follow the left brach and come to the next variable: the condensation
sink. If it is larger than the indicated value, again follow the right branch and conclude that the
day is not an event day; in the opposite case the day is classified as an event day.
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Fig. 2. The seasonal distribution of days in each cluster. Each color represents a different
cluster. The topmost row shows the days in the cluster, below that extra marks denote the event
days.
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Fig. 3. The center of each cluster can be thought of as a prototype representative of the
cluster. Here are the cluster centers. The data is normalized, so the values of each variable for
each cluster only indicate whether the variable is above or below average. The colors are as in
Fig. 2: from least to most eventful clusters blue, cyan, magneta, red.
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Fig. 4. Best predicting pair of variables, when means are computed for each day in the time
window from sunrise to sunset. Nonevents are blue and events are red. Also shown is the
optimal separating line as given by LDA.
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Fig. 5. The proportion of events (light blue bars) along the first linear discriminant (x-axis) and
the logistic model Eq. (1) fitted to this.
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